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ABSTRACT

We describe a MIMD multiprocessor simulator and application of that
simulator to a multiprocessor of current interest, the S-1 MkIla. The
simulator runs on the Cray-l and is designed so that computational physics
benchmarks are actually run and produce results. Simulator output from
this run are fed into a second level (hardware) simulator which calculates
the behavior of the multiprocessor. The simulator can simulate
multiprocessors whose basic architecture is that of a few, large
processors with or without data caches, sharing global memory through an

interconnection switch.

The simulator is applied to investigate the behavior of 4 problems on the
S-1: the benchmark physics code SIMPLE, a conjugate gradient linear
algebra problem, a simple Monte Carlo problem, and a new method for

neutron transport calculations.

*Work performed under the auspices of the U.S. Department of Energy by
the Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.






I. INTRODUCTION

Our purpose in this paper is twofold. We begin by describing a simulator
we have createa for predicting the performance of realistic physics calcula-
tions performed on multiprocessors. We then describe four multiprocessor
physics algorithms and present simulator results for their performance on a
multiprocessor of current interest, the S-1 MkIIa [S-l79].- The simulator is
available for use on the LLNL, LANL, and MFECC systems, and a user's manual

has been previously published [Axe82].

ITI. SIMULATION METHODOLOGY

1. Goals of the simulator

Simulation of computer systems is performed for a great variety of
purposes. Among these are gate level simulations to verify logical correctness
of a design, register level simulations which allow the effects of instruction
seqguences to be determined, and queuing models, which are most commonly
employed to predict performance of computer systems under timesharing loads.
The simulations described here fall in a less common category. Our goal is to
predict the performance of an MIMD computer in solving large computational
physics problems by some specified algorithm.

Our simulation has an additional goal of nearly equal importance. Since
usable and accessible MIMD machines are still very rare, computational
physicists, numerical analysts, and programmers have little or no experience
with the "parallel world". Not only is a new set of performance related
issues present, but there are new issues of logical correctness and choice of
language constructs. MPSIM provides a readily available tool for gaining at

least some of this experience. One crucial feature of the simulator is that



the algorithm being investigated is actually run in all its detail so that its
numerical behavior (e.g stability, correctness of answers) can be observed.
Among other things, this allows many bugs related to multiprocessing to be

found.

2. The trace-driven two level methodology

Simulation under MPSIM occurs at two levels (MPSIM-1 and MPSIM-2). These
two levels represent the software and hardware, respectively, of the integrated
system being modelled. This two level structure was inspired by the work of
L. Cox [Cox78]. At the first level of simulation we deal with autonomous
instruction streams referred to as processes, without reference to any
physical implementation, while at the second level we deal with physical
processors. At present we assume that there is a one-to-one mapping‘between
processes and processors, but this assumption is unnecessary, and affects only
MPSIM-2. Thus extension of the simulator to include machines such as the
Uenelcor HEP [Smi78], which has multiple processes per processor, is at least
in principle straightforward.

The two levels of the simulation (which can be run independently) are
uSed for different purposes. At the first level of simulation, we are
concerned primarily with the correct logical operation of a program, and the
getails of a particular multiprocessor implementation (such as the relative
speeds of private and shared memory, the speeds of various synchronization
operations, and so on) may be mostly ignored. On the other hand, the
performance of a multiprocessor program may depend critically on the details
of the implementation, and the second level of the simulation, which is driven

by output from the first level, is intended to predict this performance. In



general, performance information will dictate changes in the program,‘which
are incorporated by returning to the first level.

MPSIM-1 is an extended version of a simulator written by L. Sloan. It
runs on the Cray-l1 under CTSS and consists principally of a process scheduler
and the machinery and data structures to save and restore process state
information. The simulator provides the FORTRAN user with a number of
subroutines which allow the creation and destruction of processes and implement
a variety of synchronization operations. A brief summary of the available
functions is given in Table 1. A complete description is available in [Axe82].

In operation the Level 1 simulator is a timesharing system in miniature.
A single Cray-l is multiplexed among the currently runnable processes and a
simulated wall-clock is maintained. The level 1 simulator is in fact a
simulation of a particular MIMD machine - a highly idealized multiple Cray-1
with both shared and local memory.

Clearly most of the characteristics of a parallel algorithm which will
determine its performance on a real MIMD machine are contained in the details
of its behavior on this idealized MIMD machine. Not only is the pattern of
process creation, destruction, and communication present, but gquite complete
information is also available on the actual computation performed by each
process, much of which is hardware independent. The linkage between the level
1 and level 2 simulator consists of abstracting the performance related
ihformation from the level 1 behavior and transferring it to level 2 where it
may be interpreted in the context of a more realistic (and possibly quite
different) MIMD machine.

What should actually be included in the information transmitted to level

27 One extreme approach would be to include the complete state of the



Table 1

Summary of MPSIM-1 Subroutines

Name Purpose
MPINIT initialize MPSIM-1
TRCINIT begin trace output for MPSIM-2
FORK start an additional process
FURKOFF start multiple additional processes
SYNCAL global synchronization barrier
PSEM P operation on a semaphore
VSEM V operation on a semaphore
PAWS wake up the MPSIM-1 scheduler
JOINAL terminate all but 1 process
PRCEND terminate a process
TRCFIN terminate trace output for MPSIM-2
MPF INI terminate MPSIM-1 operation



simulated MP-Cray on every clock cycle. There are two serious problems with

this, however. The quantity of information is several orders of magnitude too

large to permit the behavior of a complete physics algorithm to be practically

stored or processed. Even more serious, perhaps, is the fact that most of the
information generated has no obvious relevance to machines other than a Cray-l .
or a very close relative.

At the opposite extreme, one might simply count arithmetic operations
performed by each process. This information is so incomplete, however, that
the hardware model contained in Level 2 must of necessity be quite simple. In
particular, details of interprocessor interactions which arise from memory
conflicts and cache coherence problems cannot be modeled.

In general the choice of which information should be abstracted from the
Level 1 behavior is partially subjective and must be based on a careful
assessment of the characteristics of the system being-modelled, and the size
of the computational resources available for the simulation. The nature of
the choice we have made for modelling the S-1 MkIIa is discussed in Section
I1I. For the moment we merely note that it falls between the two extremes,
preserving the details of each process' data referencing patterns and the
arithmetic operations it performs, while neglecting many details of address
calculations and instruction referencing patterns.

buring the operation of MPSIM-1 the information needed by MPSIM-2 is
gathered by machine instructions which have been automatically inserted into
the user's object code. These instructions cause control to be temporarily
transferred to simulator routines which write the desired machine state s
information to disc files, one for each process. This information gathering

process is invisible to the user except for increased CPU charges.



MPSIM-2 views the events contained in each process' trace stream as
requests for hardware services by a running process. Typically the services
required are arithmetic operations and transfers of operands. Each request is
satisfied as soon as possible within the constraints of the hardware model.

We note that this may result in a time ordering for events in separate process
streams that differs from that of MPSIM-1. Event ordering within a single
process stream is preserved (unless the MPSIM-2 hardware model allows out-of-
order execution), as are the interprocess orderings enforced by synchroni-
zation.

The output of MPSIM-2 is a detailed record of event histories for each of
the simulated processors, which in practice are usually viewed in the form of

graphical plots.

III. THE S-1 mMkIIa HARDWARE MODEL

Rs the first application of our simulation techniques we chose to
investigate the S-1 MkIIa multiprocessor. This machine is of great interest
due to its imminent availability and supercomputer performance potential.
Additionally, its design explores for the first time the use of cache memory
in high speed multiprocessors.

In this section we describe the hardware model we have incorporated in
SISIM-2 to model the S-1 MkIIa multiprocessor. When we created the modei, the
S-1 MkIIa implementation was far from complete, and a number of details were
uncertain. This was particularly the case for the main memory, crossbar
switch, and microcode used for interprocessor communication. Since hardware
documentation was generally unavailable we have relied on conversation with

S-1 project members [Far82] to fill in the gaps where possible. How



successful we have been in modelling the S-1 MkIIa as it is finally

implemented will not be known until the machine is available for testing. We
nonetheless are presenting the model and the results from it in the hope that
it will be a generally useful contribution to performance assessment of MIMD

machines.

1. Summary of S-1 hardware

The S-1 MkIla multiprocessor [S-179,Far80,Far8l] consists of up to 16
processors connected to a similar number of memory banks by a crossbar
switch. Each processor is extensively pipelined and microcoded and possesses
the following major resources:

1. Instruction cache (4k words)

2; Data cache (1ék words)

3. Address arithmetic unit

4, Floating point adder

5. Floating point multiplier

6. 16 general purpose register files with 32 words each

7. Local memory (1M word class)

The S-1 pipeliné is partitioned into two major units. The IBOX fetches
and decodes instructions and handles all tasks associated with the fetching
and storing of operands, including management of the cache, mapping of virtual
to physical addresses, and memory protection. The ABOX is responsible for the
remaining steps in instruction execution and calculates all results which will
be stored in the register files or memory.

The processors are implemented with ECL 10K and 100K integrated circuits,
while the local and global memories are implemented with é4kb MOS chips. The

design cycle time of the processor is 50 ns for the instruction fetch and



decode unit (IBOX) and 25 ns for the arithmetic unit (ABOX). The word size is
36 bits.

The ABOX adder and multiplier are innovative in several respects [Far8l].
They have been designed for low latency and are partitionable to allow
calculation with operands of 18, 36, and 72 bits. Special attention has been
devoted to achieving high speed on FFT's and other mathematical functions. In
part for this reason the adder produces both the sum and difference of its
operands simultaneously.

The instruction set is extensive, providing a wide variety of addressing
modes, dyadic and triadic vector operations, and evaluation of mathematical
functions among its most notable features.

Since the MPSIM-2 hardware model is driven by a trace stream obtained
from a Cray-1, it is appropriate to contrast the S-1 MkIIa design with that of
the Cray-l [Cra76]. The most important differences include the following:

l. The design of the memory hierarchies differ greatly. The S-1 is a
virtual address machine which utilizes a combination of fast ECL data and
instruction caches, very large MOS main memory, and disk for demand paging.
The Cray-1 is much simpler, relying on ECL technology for both its registers
and 16 interleaved banks of main memory.

2. The S-1 has fewer functional units. All instructions must pass
through either the adder or multiplier in the ABOX. On the Cray-l1 there are
thirteen functional units (including memory) which may execute instructions.

3. Vector operands on the S-1 are obtained directly from memory, while
on the Cray-1 they are held in vector registers for use by the vector
functional units. The vector stride must be 1 for the S-1, while it may be

any value on the Cray.



4, The S-1 instruction set is more powerful than that of the Cray, so
that multiple Cray instructions can often be replaced by a single S-1 instruc-
tion. The most common occurrence of this is in operand address computation,
but there are many examples.

5. 0On the S-1, results are produced strictly in the order implied by the
instruction order. On the Cray-l, although instructions are always issued in
order, results may be proauced out of order and may be produced by any of the
functional units.

Both the number of instructions and the number of machine cycles devoted
to address arithmetic are likely to differ greatly between the two machines.
In favorable cases, however, the time taken to perform these operations is
completely "hidden" through overlap with floating point operations and memory
references. The same situation holds for conditional branches. Both machines
are able to issue instructions at a maximum rate of one per cycle (12.5ns
Cray-1l, 50ns S-1 MkiIa). How closely this goal is approached is very sensitive
to the optimization techniques employed by the compiler.

As sketched above, the S-1 MkIla processor is highly complex. Our
simulation models a small carefully chosen subset of its features. In most
cases the model assumes that omitted features (e.g. piediction of conditional
branches) work perfectly, so that the simulation results form an upper bound
on performance, but there are exceptions.

In selecting the hardware features to be included in the model we began
by recognizing that the effectiveness of the data cache will be a major
determinant of performance. Occurrence of a data cache miss stops the IBOX
pipeline until the required data can be obtained. Since main memory is much

slower than the IBOX cycle time, data cache misses can easily impose a limit
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on performance. This is especially the case when processors share data so
that cache coherence problems arise. The model must therefore be able to
determine the contents of the data cache of each processor at every stage of
the computation.

On the other hand, we expect the effectiveness of the instruction cache
to be generally high and of less importance in determining performance. This
arises from both the generally much smaller size of total program instructions
relative to cache size, and from the generally much higher localities observed
for program insfruction references compared to data references. This is most
fortunate, since the instruction cache hit rate could not be modelled
accurately without actual S-1 instruction streams for the computation. These
will not be usefully available until a vectorizing compiler for the machine is
completed.

Our mogel of.the ABOX is quite simplified, since it ignores delays which
result from data dependencies between operations. If all required operands
are in cache the simulated ABOX is ready to execute a new instruction a fixed
time (T; ) after beginning the previous instruction. We have chosen

issue
to be the shortest possible - those obtained in the absence of data

T.

issue
dependencies. This is not a necessary restriction on the model, since all
data dependencies are in fact available in the trace stream. Again, our
results are expected to form an upper bond on performance.

Most of the complexity of the S-1 processor arises from the need to keep

arithmetic function units at the end of a long complex pipeline supplied with
operands at a continuously high rate. (See [Kog8l] and [Lor72] for good

discussions of pipelined processors.) To achieve this, a variety of technigues

is employed, including the partial decoupling of the IBOX and ABOX with an
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operand queue, the prediction of conditional branches, and the prediction of
values needed in address computations [Far8l].

Our model assumes that in the absence of data cache misses, all of these
technigues work perfectly, so that the functional units perform work at the
maximum possible rate. Clearly this may be seriously in error for some
computations. A Monte Carlo computation with a large number of guasi-random
conditional branches is likely to run more slowly than our model would predict,
for example, due to reducea effectiveness of the hardware conditional branch
prediction strategy.

The model makes an additional simplifying assumption: the cost of
address arithmetic instructions is ignored. As discussed above, this is
equivalent to assuming that address arithmetic calculations are fully
overlapped with other computations. Although the address arithmetic
instructions themselves are filtered out, the memory reference instructions
needed to fetch their operands are retained. This is necessary to include
their effect on the data cache hit ratio (typically small).

The effect of the simplifications we have discussed so far is exclusively
in the direction of predicting performance which is too high. The performance
results for the Monte Carlo algorithm discussed in Section IV probably show
these effects to a significant degree. The model, however, contains additional
assumptions which work in the other direction. The most important of these is
ignoring the chaining of vector operations on the S-1. Chaining allows triadic
vector instructions to make simultaneous use of the adder and multiplier in
the ABOX. This can increase the Mflop rate by up to a factor of 2.
Measurements on the Cray-l, which has a more general chaining capability, show

the effect to be somewhat less than this in most cases.
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Of less importance is the fact that the model does not reflect the
ability of the S-1 to calculate special functions (e.g. sin, log, exp) nearly
as fast as multiplies. Measurements on the Cray-1l, which calculates these
functions slowly relative to multiply (120ns vs 12 ns per result in vector
mode), shows that even physics simulation codes which make intensive use (by
current standards) of special functions very rarely spend more than 10% of
their time performing them. It is quite possible, however, that algorithms
will evolve which exploit the S-1's ability to evaluate special functions
inexpensively.

Table 2 list the Cray-l1 instructions from the MPSIM-1 run which are
included in the trace stream passed to MPSIM-2. The trace stream contains a
four word record for each of these instructions which is executed by MPSIM-1.
The record includes the identity of the process executing the instruction, the
simulated cycle clock at instruction issue, and complete information on the

registers and memory addresses utilized by the instruction.
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Table 2

List of Cray-1 Instructions Passed to MPSIM-2

Cray-l CAL Description
0341 jk Bjk,Ai ,AO Read (Ai) words to B register jk from (AQ)
0341 jk Bjk,Ai 0,AC Read (Ai) words to B register jk from (AOQ)

U351 jk ,AC Bjk,Ai Store (Ai) words at B register jk to (AO)
0351 jk 0,A0 Bjk,Ai Store (Ai) words at B register jk to (AO)
0361 jk Tjk,Ai ,AO Read (Ai) words to T register jk from (AOQ)
0361 3k Tjk,Ai 0,AQ Read (Ai) words to T register jk from (AQ)
03741 jk A0 Tjk,Ai Store (Ai) words at T register jk to (AO)
0371jk 0,A0 Tjk,Ai Store (Ai) words at T register jk to (AQ)

0601 jk Si Sj+Sk Integer sum of (Sj) and (Sk) to Si

0611 jk Si Sj=Sk Integer difference of (Sj) and (Sk) to Si

0611k Si -Sk Transmit negative of (Sk) to Si

062ijk  Si Sj+FSk- Floating sum of (Sj) and (Sk) to Si

0620k Si +FSk Normalize (Sk) to Si

0631 jk Si Sj-FSk Floating difference of (Sj) and (Sk) to Si
06310k Si -FSk Transmit normalized negative of (Sk) to Si

0641 jk Si Sj*FSk Floating product of (Sj) and (Sk) to Si

0651 jk Si S j*HSk Half precision rounded floating product of (Sj)
and (Sk) to Si

0661 jk Si S j*RSk Full precision rounded floating product of (Sj)
and (Sk) to Si

0671 jk Si Sj*ISk 2 - Floating product of (Sj) and (Sk) to Si

0704 jx Si /HSj Floating reciprocal approximation of (Sj) to Si
10hijkm Ai exp,Ah “Read from ((Ah) + exp) to Ai (AO-0)
100ijkm Al exp,0 Read from (exp) to Ai

100ijkm Al exp, Read from (exp) to Ai

10nhi000 Al ,Ah Read from (An) to Al

1lhijkm exp,An Ai Store (Ai) to (Ah) + exp (A0-0)
110ijkm exp,0 Ai Store (Ai) to exp

110ijkm exp, Ai Store (Ai) to exp

11hi000 ,Ah Ai Store (Ai) to (Ah)

12hijkm  Si exp,Anh Read from ((Ah) + exp) to Si (A0=0)
120ijkm  Si exp,0 Read from exp to Si

120ijkm  Si exp, Read from exp to Si

12hi000 Si ,An Read from (Ah) to Si

13hijkm  exp,Ah Si Store (Si) to (Ah) + exp (A0=0)

14




Cray-1 CAL
130ijkm  exp,
13hi000  ,Ah
1401k Vi
1411 jk Vi
1421 3k Vi
14210k Vi
1431 jk Vi
1441 jk Vi
1451 jk Vi
145iii Vi
1461 jk Vi
14610k Vi
1471 jk Vi
1501 jk Vi
1501 j0 Vi
1511 jk Vi
151ijo Vi
1521 jk Vi
1521 j0 Vi
1531 jk Vi
153130 Vi
1541 jk Vi
15513k Vi
1561 jk Vi
15610k Vi
1571 jk Vi
1601 jk Vi
l6li jk Vi
1621 jk Vi
1631 jk Vi
1641 jk Vi
1651 jk Vi
1661 jk Vi
1671 jk Vi
1701 jk Vi
17010k Vi
1711 jk Vi
1721 jk Vi
172i0k Vi
1731 jk Vi
1741 jO Vi
174i31 Vi

5i

Si
Sj&VK
Vj&Vk
Sjivk
vk
Vjivk
Sj/VK
V3i/Vk
0
SjIVK&VM

#VMEVK
Vj!Vk&VM

Vj<Ak
Vi<l
Vj>Rk
Vij>l
Vj,Vj<Ak
Vi,vji<l
Vj,VJj>Ak
Vi,Vvj>l
Sj+VK

V j+VK
Sj-Vvk
-Vk
Vj-Vk
Sj*FVk
Vj*FVvk
SJj*HVK

V j*HVK

Sj*Rvk
Vj*Rvk
Sj*Ivk
Vj*Ivk
Sj+FVk
+FVk
Vj+FVk
Sj-FVk
-FVk
Vj-FVK
/HV
PVJ

Table 2 (Continued)

Description

Store (Si) to exp

Store (Si) to (Anh)

Logical products of (Sj) and (Vk) to Vi
Logical products of (Vj) and (Vk) to Vi
Logical sums of (Sj) and (Vk) to Vi
Transmit (vk) to Vi

Logical sums of (Vj) and (VKk) to Vi
Logical differences of (Sj) and (Vk) to Vi
Logical differences of (vVj) and (Vk) to Vi
Clear Vi

Transmit (Sj) if VM bit = 1; (vk) if VM bit = O
to vi

vector merge of (vk) and O to Vi

Transmit (Vj) if WM bit = 1; (Vk) if VM bit = O

to vi

shift (vj) left (Ak) places to Vi

shift (vj) left one place to Vi

shift (vj) right (Ak) places to Vi

shift (Vj) right one place to Vi

Double shift (vj) left (Ak) places to Vi

Double shift (Vj) left one place to Vi

Double shift (vj) left (Ak) places to Vi

Double shift (Vj) left one place to Vi

Integer sums of (Sj) and (vk) to Vi

Integer sums of (Vj) and (Vk) to Vi

Integer differences of (Sj) and (Vk) to Vi

Transmit negative of (Vk) to Vi

Integer differences of (Vj) and (Vk) to Vi

Floating products of (Sj) and (Vk) to Vi

Floating products of (Vj) and (Vk) to Vi

Half precision rounded floating products of (Sj)
and (Vk) to Vi

Half precision rounded floating products of (Vj)
and (Vk) to Vi

Rounded floating products of (Sj) and (Vk) to Vi

Rounded floating products of (Vj) and (Vk) to Vi

2 - floating products of (Sj) and (Vk) to Vi

2 - floating products of (Vj) and (Vk) to Vi

Floating sums of (5j) and (Vk) to Vi

Normalize (Vk) to Vi

Floating sums of (Vj) and (VK) to Vi

Floating differences of (Sj) and (Vk) to Vi

Transmit normalized negatives of (vk) to Vi

Floating differences of (Vj) and (Vk) to Vi

Floating reciprocal approximations of (Vj) to Vi

Population counts of (Vj) to Vi

15



Cray-1 CAL

174ij2 Vi QVJ
175xj0 WM Vji,Z
175xj1 VM Vj,N
175xj2 VM Vj,P
175xj3 VM VM
176ixk Vi ,AQ, Ak
176ix0 Vi yA0,1
177xjk ,A0,AK Vj
177xj0 JA0,1 Vj

Table 2 (Continued)

Description

Population count parities of (Vj) to Vi

VM=1 where (Vj) =0

VM=1 where (Vj) .NE. O

VM=1 where (Vj) positive

VM=1 where (Vj) negative

Read (VL) words to Vi from (AO) incremented by (Ak)
Read (VL) words to Vi from (AQ) incremented by 1
Store (VL) words from Vj to (AO) incremented by (Ak)
Store (VL) words to Vj from (AQO) incremented by 1

16



3. Details of S-1 Mark Ila Hardware Model

The S-1 Mark IIa is assumed to be a multiprocessor in which external
communication initiated by a processor is carried out through a crosébar
switch. The communication can be directed either to another processor or to a
global memory bank. Each processor has a private cache memory and a private
local memory. The address space of the individual processor is quite large,
so that the global and local memories are not effectively limited in size.
The cache memory for a processor allows 4 reads and 4 writes per 50ns IBOX
- cycle. The cache is set associative, that is, a memory location belongs to a
given set determined from its address. There are 256 possible sets for the
S-1 Mark IIa and there are four lines of data from a given set which may be in
cache memory at a time. A line of data consists of 16 contiguous 36 bit
words. From the above it can be seen that the design size of cache memory is
256 x 4 x 16 = 16K words. The simulator treats all but one of the specific
numbers above as parameters which can be changed to investigate the effects of
new technology and design changes. The exception is the line size, fixed at
16 words. A complete list of the default parameter values is given in Table 3.

Uther parameters are set at run time by the user. The number of
processors may pe chosen to be 1 to 16. The number of global memory banks may
also be chosen to be 1 to 16. The equivalent precision of the machine may
also be set to single or double precision. In double precision two 36 bit
words are used to represent the information originally present in one 64 bit

CRAY word. This is the default simulator setting.
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Memory addresses passed to MPSIM-2 are treated as virtual addresses. The

mapping of virtual to physical addresses is assumed to result in successive
blocks of virtual addresses being mapped to successive global memory banks.
This type of interleaving was chosen because it results in balanced loading of
the memory banks, but it does not always result in optimal performance. The
block size may be set by the user to be any power of 2, with 2**10 = 1024
words being the default value. This is the smallest block size permitted by
the S-1 architecture.

If all required operands are in cache an ABOX operation begins at a time

T after the previous operation was begun. If any required operands are

issue
not in cache, the ABOX must wait until they can be obtained. The issue time
for a scalar arithmetic operation is two cycles, independent of operation
type. Issue time for a vector operation is VL+l cycles for single precision
and 2*VL+1l cycles for double precision, where VL is the vector length.
| Instructions are assumed to be available for execution immediately after
the previous instruction completes. Thus most functions of the I-Box are not
simulated, as discussed earlier in Section III. Chaining is not simulated.
The S-1 has vector instructions which can accept inputs from memory and
return outputs to memory with no need for intervening register storage. Thus
the S-1 has no vector registers. If a trace is generated on a machine which
does have vector registers (such as the Cray 1), references to those vector
registers are treated as references to local memory by the S-1. Since the
vector registers are usually heavily used, the S-1 equivalents will almost

always be in cache. A transfer between a vector register equivalent in cache

and a memory location in cache incurs no time charge since realistic S-1 coding
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would have no such transfer. It should be realized that the use of "vector
registers" in this sense is advantageous on cached-based machines such as the
S-1. The vector registers on the Cray-1 are frequently utilized by the
compiler to hold intermediate vector results within a vector loop. If such
temporary operands are each assigned unique locations in memory, many
unnecessary cache misses result.

The basic memory reference operation in the S-1 Mark Ila is the read
operation. Every write instruction which does not have the result datum in
cache with write access is implemented by first carrying out a read instruction
to bring the datum into cache. The write operation takes place in cache and
the result is left there until some other processor requests it or the cache
line is needed for another operation.

When a memory reference is to be made, the address is converted to a
physical address and the set number is generated. The address falls within a
line having that set number. If the line is currently active, then a cache
miss is immediately counted and the memory reference is recycled for another
attempt later. The conditions under which a line is considered to be active
are:

a. The line is to be transferred to or from global memory and write

access has been or will be granted.

b. The line is to be transferred from global memory with read access

ana write access is desired by the current processor.

C. The line is in another cache with read access and write access is

desired by that other processor.
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Next the cache is checked to see which element of the set (if any) has
the desired line. The locus of the original datum - whether global or local -
is also determined. If the line is in cache and is valid then we have a
possible cache hit. A valid local variable in cache is a cache hit. A valid
global memory line in cache is a cache hit unless write access is desired but
not yet granted. All memory references for a given operation can be completed
in one cycle if all are cache hits.

Cache misses will involve the crossbar switch network for anything but a
local variable. A line in cache with read access granted but write access
desired gives rise to a check of all other processors and invalidation of that
line for those that have read access. If a line must be replaced in cache,
the set is scanned for already invalid lines and, if none are found, the least
recently used line in the set is marked. If write access has been granted for
that line, it will be written out to the appropriate memory after the new line
has been brought in.

If a line in global memory is desired for read access and no other
processor has it with write access, the appropriate switch path is requested
and the line delivered when the path is clear and the proper time has
elapsed. The same is true if the line is desired for write access and no
other processor has the line in cache. Once a switch path has been opened, it
is held open until that transaction is completed.

If a line in global memory is desired and any other probessor has write
access to that line, then a message is passed through the switch requesting
the line to be written back to global memory. After the line is written back

it is read by the original processor.
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If a line in global memory is desired for write access and other
processors have it in cache with read access, messages are passed through the
switch to invalidate the other cache copies. Then the line is obtained with
write access from global memory.

The switch in the model is assumed to be of the crossbar type. The
crossbar switch has input and output lines which are used to establish the
paths of communication. A processor may initiate communication either to
another processor or to a global memory bank. In the usual mode of operation,
it is assumed that a memory bank and a processor having the same number will
share a switch output line. Thus switch conflicts would occur whenever the
two possible outputs are referenced at the same time. This mode has been used
for the results described in Section IV. An alternate description of the
crosshar switch assigns memory banks and processors to separate switch output
lines. This latter mode has no switch conflicts between memory banks and
processors. If either input or output line is busy when a new request is made
of the switch, the request is placed into a queue to await service.

This model of the S-1 Mark Ila places all requests for a switch path and
routing decisions at the switch level. In the actual machine, a given
processor may hold a request for a switch line until it can be issued. This
should make no significant difference in results, since we are really

simulating the same gueuing procedure.
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The queuing procedure for the crossbar switch has two levels, here called
active and pending. In each level only one message from a given processor may
be present at a time. The switch accepts messages from the top of the active
queue, which is filled from the bottom with messages from the top of the
pending queue. This guarantees that, if two processors are competing for the
same resource, one processor cannot be served twice before its competitor is
served.

The pending queue is filled on a first come-first serve basis. Overflow
messages are held in a special storage area and submitted to the pending queue
on a first come-first serve basis. This is done in lieu of forcing the

processor to resubmit requests to the queuing structure.
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Table 3

S-1 Mark Ila Machine Characteristics and Simulator Default Values

Attribute
Number of sets in cache
Number of lines from a set in cache
Number of words in a line

Numnber of bits in a word

Time - basic arithmetic cycle

Time - to proauce one result from a single precision vector
instruction with values in cache

Time - to produce one result from a double precision vector
instruction with values in cache

Time - data request and transfer from global memory to cache

Time - data transfer from cache to global memory

Time - data request and transfer from local memory to cache

Time - data transfer from cache to local memory

Time - between successive services from a global memory
bank to cache

Time - between successive starts of data transfers from
cache to global memory banks

Time - to start invalidation search for a given line in other
cache memories

Time - to send a message to change validity of a line in
another processor's cache memory

Time - to finish invalidation search for a given line in other
cache memories

Time - to invalidate a line in cache after message received
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value

256
4
16
36
25

25

50

2000
2000
1000
1000

1300

1700

150

300

150
125

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns




In orcger to run problems in the parallel processor simulation, some
functions of the operating system had to be modeled. Specifically, parallel-
ization constructs such as forks, join, semaphores, etc. were assumed to be
handled by the operating system. The basic philosophy taken was that the
operating system was very efficient--able to carry out its assignments in a

minimum time. One cycle was charged to account for each simulator operation.

A charge of zero cycles leads to unrealistic situations with strings of

‘'simulator operations being carried out instantaneously/simultaneously. The

time charges incurred for the operating system are certainly less than those

which would occur for a real system!
The functions supported by the operating system are

1) Start or restart a processor.

2) Fork off a task to another processor.

3) P a semaphore (Decrement by one. If result less than zero processor will
wait).

4) V a semaphore (Increment by one. If result less than or equal to zero,
choose a waiting processor at random and command it to resume execution).

5) Terminate a process on a processor.

6) Synch All. When each processor reaches a synchronization point, it will
wait. When all have reached, all will be restarted.

7) Join All. Wwhen each processor reaches a join point, it will wait. When

all have reached, one specified processor will restart.
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4, Discussion of verification

There are two separable verification issues associated with the simulation
of computers as we are performing it. The first of these is how well the model
reflects the reality of the machine being simulated, while the second is
whether the simulator as implemented embodies the chosen model without
errors. The first question is nearly impossible to answer in the absence of a
functioning machine, compiler, and a broad spectrum of comparison tests. On
the other hand, the second question may be answered with some confidence
through detailed analysis of simulation output and comparison with analytic
models which can be constructed for special cases.

An analytic model can be coggtructed for a highly idealized, but
nonetheless instructive, situation. We consider the case in which each
processor is executing an instruction stream that has no agependencies on any
other processor's sffeam (they share no data and perform no synchronization).
The instructions consist only of dyadic arithmetic operations on long vectors,
which are assumed to reside in global memory. This situation is closely
approximated when a vectorized sweep over a large two-dimensional mesh is
partitioned by assigning each processor a section of the mesh disjoint from

that of the others.

The model is described by the following parameters:

P -- Number of processors

M - Number of memory banks

Ty -- Time between successive arithmetic results in vector mode
Tm - Time to transfer a line between data cache and a memory bank

in the absence of bank conflicts
i -- Vector stride (address increment between successive operands)

1l -- Number of operands in a cache line
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when performing a vector operation the S-1 MkIIla does not prefetch
operands, so that when a cache miss occurs the ABOX stops producing results
until the miss is serviced. The time to produce N results is thus

T = N*Ta + K*ﬂw
where K is the number of cache misses that occur and Ty is the average time
to service a cache miss (including memory conflicts). Wwhen N is sufficiently
large relative to the cache size the first reference to a given memory line
within any of the vector operands will always result in a cache miss. Each
memory line is referenced a total of [1/i] times by the vector operation,
however, and all but the first of these are cache hits. Since the vector
operation makes 3N memory references the number of cache misses is then

K = 3N/ [1/i]
The rate at which results are produced is then

S

NT = 1/7( T, + 3T /[1/1] )

sO/( 1 + 3/[1/il*(TyT.) )
where sO=l/Ta is maximum‘vector speed of the machine, which is achieved only
in the complete absence of cache misses.

To complete the model we need to know Ty,. The average miss service
time is increased over Tm, the memory access time, by two effects - the
presence of memory conflicts and the need to write back to memory cache lines
which have been modified by the vector operation. We note that here “memory
access time" is the total time the ABOX is stopped due to a cache miss, and
includes time for microcode execution by the processor and for transfer of
data through the crossbar network in addition to memory bank access time.

Estimating the effect on performance of writing back LRU'd cache lines to

memory is difficult. The number of such writebacks is simply K/3, since the
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two input operands are unchanged and only lines of the result operand need be
written back. This increases £he number of cache line transfers to 4K/3. The
ABOX is not stopped by the writeback, however, unless another cache miss
occurs. This reduces the impact of writebacks on performance so that it is
perhaps a 20% effect. For present purposes we ignore it, although the
simulator should model it accurately.

Yen et al [Yen82] have recently published a simple model which accurately
predicts the effects of conflicts on TM. Their model assumes that
processors access memory banks randomly. When a requesting processor finds a
memory bank busy it resubmits its request on the next memory cycle. With this
model we have that

TM = Tm/f(P,M,w)
where y is the probability that a processor issues a memory request in a
memory cycle time in the absence of conflicts and f results from solving a
nonlinear algeoraic equation. For our situation

Y = K*Tm/(K*Tm + N*Ta) =1/(1 + Ta/Tm*[l/i]/B)
and this allows the speed, s, to be calculated.

To compare our simulator with this analytic model we wrote an application
problem in which each of P processors performs a long vector add on operands
disjoint from those of the other P-1 processors. The cache is initially empty
and the vector length, N, was chosen to be 5000, just short enough that LRU
writebacks do not occur. The page size was decreased to 16 words, and, as in
all our runs, successive pages are located in successive memory banks. This
should closely duplicate the case for which the model is valid.

Table 4 shows a comparison of the results of the MPSIM simulator and the

analytic model. For all cases Ta=25 ns and T,=2000 ns, so that the basic
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speed of each processor is s0=40 Mflops. The speeds in the table are

expressed in Mflops and are per processor.

Table 4

P M i Hit ratio y f s (MPSIM) s(analytic)
4 2 1 .9375 .938 449 1.3 1.2

4 4 1 .9375 .938 .668 2.2 1.7

4 4 4 .7500 .984 - .648 0.5 0.4

4 4 16 0. .996 643 0.1 0.1

4 8 1 .9375 .938 .829 2.2 2.1

8 8 1 .9375 .938 .651 1.9 1.7
le6 16 1 .9375 .938 .642 1.6 1.6

The agreement of the model and the simulator is quite good over a wide
range of parameters. That the simulator predicts somewhat better performance
is expected, since the simulator recognizes that some machine operations
included in the time Tm are not susceptible to conflicts, while the model
does not. This agreement increases our confidence that the simulator is
working as intended. To check cases not addressed by this test, such as
proper handling of cache writebacks and cache coherence operations we have
analyzed many instruction sequences in detail.

We note that in all cases the attained performance is far below sO.

Instead of being limited by the speed of the floating point functional units,
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performance is limited by memory bandwidth. This is also the case for the

alyorithms we discuss in Section IV.

IV. FOUR MULTIPROCESSOR PHYSICS ALGORITHMS

1. General comments on partitioning and programming strategy.

The four algorithms we discuss below share a general approach to the
partitioning of problems into multiple computational tasks and the management
of the parallel processes which perform them. We have in general taken an
existing uniprocessor algorithm and adapted it for a MIMD machine with minimal
changes to its data and control structures. Our view is that this is a
necessary, but far from final, step in algorithm development for MIMD machines.

All of the algorithms we discuss are iterative. The computation consists
of a series of "cycles", each nearly identical in behavior. We have preserved
this structure in the MIMD versions by requiring global synchronization at the
ena of each cycle. Additional global synchronizations are required within
each cycle to achieve logical correctness while retaining the basic control
structure of the uniprocessor version.

The partitioning of the problems is based on some simple static
partitioning of the problem's data structures. In the case of two-dimensional
meshes, for example, each parallel process works with a fixed contiguous group
of rows or columns. We have also confined ourselves to a fixed one-to-one
mapping of processes to physical processors, so that the effects of process
scheduling strategies could be initially ignored.

In most cases the first MIMD algorithms we produced had unacceptably low
levels of predicted performance. A few simple techniques were applied to
achieve higher performance. Most commonly, additional processor-local copies

of global data were supplied, or loops were reordered to reduce cache misses.
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The algorithms we present are far from being optimally tuned for the S-1,
however. Significantly increased performance may be obtained in some cases by
taking advantage of the interprocessor message hardware.

The simulator output includes a large number of performance diagnostic
guantities. In our discussion of algorithms we have used the following
definitions. The cache hit ratio is the ratioc of the number of memory
references originally finding a datum in cache divided by the total number of
memory references. Efficiency is the ratio of the time one processor needs
for a calculation divided by P times the time it takes P processors to finish
the same calculation. Traffic ratio is the ratio of the number of bits
transferred between cache and other memory to the total number of bits which
flow between cache memory and its CPU.

Speed is measured in megaflops (MFLOPS), millions of floating point
operations performed per second. Speedup is the ratic of the time it takes
one processor to perform a calculation divided by the time it takes a
specified number of processors to complete the calculation.

It is important to notice that direct comparison of MFLOPS on a parallel
machine versus a sequential machine may be misleading since many parallel
algorithms perform significantly more arithmetic operations than their
sequential analogs. For the algorithms we discuss below, however, such

redundant operations are completely negligible.

2. SIMPLE
SIMPLE [Cro78] is a widely distributed code which models the hydrodynamic
and thermal behavior of fluids in two dimensions. The hydrodynamics is a

standard Lagrangian formulation using an artificial viscosity. Heat transfer



is performed in the diffusion approximation using a single ADI iteration on a
five point implicit difference operator. Thermodynamic properties of the
fluid are obtained by table lookup and biquadratic interpolation between table
entries.

After an initialization phase the calculation consists of a sequence of
timesteps each of which advances the solution by a time increment DT in the
following manner:

1. calculate the pressure in each zone given the temperature and density

2. compute the acceleration, new velocity and new position of each zone

3. compute new zone volumes

4. compute the artificial viscosity and Courant timestep limit for each

zone

5. calculate new zone internal energy after hydrodynamic work. To

maintain sufficient accuracy the new energy is first predicted using old

thermodynamic quantities. The predicted energy is then used to calculate
more accurate thermodynamic quantities which are used for the final
calculation of the new internal energy.

6. calculate new temperature after hydrodynamics from new density and

internal energy

7. calculate heat diffusion coefficient for each zone

8. calculate the coupling constants for the column direction (one per

zone)

9. calculate an intermediate temperature by solving a tridiagonal linear

system which couples zones in the same column and has the temperature

from step 7 as a right hand side.

10. calculate the coupling constants for the row direction (one per zone)
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11. calculate the new temperature by solving a tridiagonal linear system

which couples zones in fhe same row and has the temperature from step 9

as a right hand side.

12. calculate a heat diffusion DT for each zone from the rate of change

of its temperature

13. calculate new zone internal energy from new temperature

14. calculate whole problem sums (kinetic and internal energy and heat

flow across problem boundaries) and next DT by finding the minimum over

the entire mesh of the zonal Courant and heat diffusion DT's

Although space does not permit a complete discussion of these calcula-
tional steps, some comments are in order. Steps 1 through 6 constitute the
hydrodynamics portion of the timestep. The method is explicit, and the new
values for a zone depend only on the previous values of that zone and its six
nearest neighbors. Steps 7 through 13 constitute the heat conduction portion
of the timestep. The method is implicit, and the new temperature of a zone
depends on the previous values of all zones in the mesh. This difference is
quite important for a multiprocessor. It is also important to note that
boundary zones require special treatment for both hydrodynamics and heat
conduction and require more calculations than interior zones.

We began with a version of SIMPLE which is almost completely vectorized
by the CFT or CIVIC compilers for the Cray-l1. This program was modified for a
multiprocessor in a straightforward manner. Each processor is assigned a
fixed contigﬁous group of mesh columns for which it is responsible at each
stage of the calculation. With the exception of the heat conduction row sweep
(discussea below) all calculations are vectorized along columns. All arrays

are stored columnwise, so this results in vector operations with unit stride,
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which is ideal for the S-1. Synchronization barriers were emplaced between
calculation stages when required to ensure the proper data dependencies.
Fourteen such barriers are required within the timestep loop. The program
contains a single critical section implemented with semaphores which is used
for updating scalars which depend on the global mesh (step 14).

with the exception of a single processor which is given the additional
duty of performing output to the edit file, all processors execute identical
code. In addition to the main data structures of the problem, which are in
shared memory, each processor is supplied with local data structures which are
stored in processor private memory. A few of these, such as loop indices,
must be supplied to ensure logically correct operation. The majority of them,
however, are made local to increase performance. These include the material
property tables, arrays holding the coupling coefficients for heat conduction,
and scratchpad arrays used for holding temporary results. Local scalars are
used to hold each processor's contribution to global mesh guantities such as
total kinetic energy and minimum timestep (step 14).

As mentioned above, the heat conduction calculation contains an exception
to the column group partitioning used in the remainder of the code. The heat
conduction step in fact raises some interesting partitioning issues, and
deserves special discussion. Since the value of a zone temperature after the
heat conduction step depends on the previous temperatures of all mesh zones,
it is inevitable that this calculation on a multiprocessor will involve
substantial interprocessor communication. There are at least two different
ways of organizing the calculation.

1. Straightforward partitioning. During the column sweep each processor

is given a group of columns, while during the row sweep each processor is
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given a group of rows. All interprocessor communication is handled invisibly
by the cache coherence algorithm in the hardware.

2. wavefront with row blocking. Each processor works with a group of
columns for both the row and column sweep. During the row sweep processor i+l
cannot begin on its portion of a row until processor i is finished with its
portion of that row.

The second method, which is advocated by Gilbert [Gil79] attempts to
reduce interprocessor communication demands at the expense of reduced
parallelism and increased program complexity. The idea is that each processor
"owns" the data associated with a column group. During the row sweep a
processor continues to work with this local data except at the boundaries of
its column group, where interprocessor communication is required. For large
column groups the relative cost of this communication becomes small.

This strategy is effective only if the data associated with a column
group remains local to a processor throughout the calculation. On the S-1
MkIIa there are two kinds of local data - that which is contained in the data
cache and that which is contained in processor private memory external to the
cache. Data which is in cache remains there only until it is removed by the
replacement algorithm to make way for other data. This kind of locality is
transient and for large column groups is destroyed during the column sweep.
For the wavefront algorithm to work as intended, therefore, the column group
data must be held in processor local memory. Processors utilize the crossbar
switch only to send data packets directly to other processors.

The wavefront approach therefore is a form of "distributed computing" and
as such requires quite different programming constructs than employed in

uniprocessor scientific programs. In particular, the extended version of

34



FORTRAN we are using has no convenient facilities to distinguish local from
shared data or for the sending and receiving of interprocessor messages. The
first approach, however, allows the heat conduction part of SIMPLE to be
programmed in the same style as the rest of the code. m

For the simulations reported here we have chosen to use the straightforward
partitioning appropriate to a tightly coupled approach to multiprocessing. It
is interesting to note that for large problems the overhead directly
attriputable to interprocessor communication still becomes small. It is of
course true that each processor writes out many cache lines to main memory
which are later read by other processors. The point is that the vast majority
of these reads and writes are performed by the normal cache replacement
algorithm, and would occur even in the absence of other processors. The penalty
of the shared memory approach is then paid mainly in bank conflicts.

We have run problems varying in size from 20C,20R to 90C,40R (where C
denotes number of columns and R number of rows) and utilizing from 1 to 16
processors. Most of these have been run in single precision mode, although a
few double precision runs have also been made. The results we report here are
for a single execution of steps 1 - 14 of the timestep advance. Runs with
multiple cycles have been performed, and show that the transient effects from
starting with an empty cache are quite small. Table 5 summarizes our results
for a 90C,20R problem run in single precision with varying numbers of

processors.
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Table 5

P Mflops Speedup Efficiency
1 9.04 1.00 1.00
2 16.00 1.77 .89
4 26.45 2.93 I3
6 32.17 : 3.56 .59
8 34.7 3.84 .48

The efficiency drops rapidly for P>4 and there is clearly little to be
gained by running this problem on more than 8 processors.

Figures 1 through 5 show detailed simulator results for a single run, a
90C,20R single precision problem run with 4 processors. As is evident, each
phase of the calculation exhibits its own pattern. of machine activity, so that
the behavior during the timestep is quite complex. This pattern is
recognizably similar for all multiprocessor SIMPLE runs we Have performed,
regardless of size or number of processors;

It is interesting to compare the machine activity during the heat
conduction row sweep with that of the column sweep. The row sweep shows high
crosstraffic loads and takes about 2.75 times as long as the column sweep.
Both column and row sweeps show extensive use of processor local memory,
mainly due to the local storage of coupling coefficients. In the light of the
discussion above we exbect this picture to change substantially for
sufficiently large problems, which should show a less pronounced performance

difference between column and row sweeps.
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Figure 1

Simulated performance of 4 processor S-1 MkIIa in single precision mode
on SIMPLE. The problem size is 90C, 20R. The upper portion of the

figure shows the arrival times of the individual processors at the
algorithm's synchronization points. All processors are restarted after
the synchronization at the point marked "X". The step numbers refer to
the calculational steps defined in the text. The lower portion of the
figure shows the average per-processor megaflops vs. time measured in 25
ns ABOX cycles.
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Figure 2

Simulated performance of 4 processor S-1 MkIIa in single precision mode on
SIMPLE. The problem size is 90C, 20R. The figure plots the average
fraction of time spent servicing data cache missed vs. time in 25 ns ABOX
cycles.
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Figure 3

Simulated performance of 4 processor S-1 MkIIa in single precision mode on
SIMPLE. The problem size is 90C, 20R. The figure plots the average
global memory load as a fraction of total available bandwidth vs. time in
25 ns ABOX cycles.
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Simulated performance of 4 processor S-1 MkIIa in single precision mode on
SIMPLE. The problem size is 90C, 20R. The figure plots the average local
memory load as a fraction of total available bandwidth vs. time in 25 ns
ABOX cycles.
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We can easily calculate the problem size for which this transition should
occur. For the 90C,20R problem, each processor requires roughly 5%90%*20/4 =
2250 distinct operands from the point it begins to access the shared
temperature array during the column sweep until the column sweep is finished.
This is substantially smaller than the cache size of 16384 words, so that each
processor's entire column group is present in cache at the end of the column
sweep. The subsequent row sweep then triggers the observed burst of cross
traffic. For problems larger by a factor of roughly 8 (16000 zones), however,
this situation will change and each processor at the end of the column sweep
will already have started writing back to shared memory the first temperature
elements it accessed.

In spite of its dramatic appearance, the row sweep is not the only cause
of the inefficiency shown in Table 5. Analysis of the simulator runs allows

us to assign the inefficiency to three major causes, as shown below.

P=4 P=8
Waiting at synchronization barriers: .03 .06
Global memory conflicts: .15 .25
Interprocessor line transfer: .06 A2
Total: W24 A3

It is perhaps more useful to express these same numbers as "lost CPU's"

by multiplying the fractional performance loss by P.

P=4 P=8

Waiting at synchronization barriers: .12 .48
Global memory conflicts: .60 2.00
Interprocessor line transfer: .24 .96

- Total: .96 3.44
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we clearly must consider how this picture will change when the mesh size
is greatly increased. As argued above, the fractional cost of both
synchronization waiting and interprocessor line transfer should drop steadily
with increasing mesh size, leaving global memory conflicts as the principal
cost of multiprocessing. Simple models of multiprocessor memories [Yen82]
predict that crossbar systems with equal numbers of processors and'memories
show an inefficiency due to conflicts that is nearly independent of P when P
is greater than about 8. These facts taken together imply that efficiencies
for sufficiently large problems should be fairly high (about 0.7) even for
large numbers of processors.

This is not the end of the story, however. We must note that high
efficiency does not necessarily imply high performance! It merely means that
performance continues to grow linearly as processors are added. On a cache
based machine, such as the S-1, the performance of each uniprocessor drops as
problem size is increased. Table 6 shows the effect of varying the mesh size

for SIMPLE in the single processor case.

Table 6
C R C*R Mflops Hit Ratio Tfc Ratio
10 20 200 13.61 .9956 .078
15 20 300 12.68 .9952 .087
30 20 600 11.05 L9943 .108
60 20 1200 9.89 L9934 .128
S0 20 1800 9.02 9925 .145
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On may expect that this decline will continue as problem size is further
increased. The asymptotic value is difficult to predict without detailed
analysis of the algorithm. A lower bound on performance is probably given by
the results of Table 4, which would imply that programs dominated by long
ayadic vector operations would have asymptotic performance of about 2 MFLOPS.
The issue of performance scaling with problem size therefore becomes
complex. As problem size increases performance tends to also increase, due to
the decreasing relative cost of synchronization waiting and interprocessor
communication. At the same time, however, performance is negatively affected

by the decreasing effectiveness of cache as the data set size increases.
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3. The Biconjugate Gradient Algorithm

The biconjugate gradient algorithm (BCG) is a relatively new algorithm
[Saa80] for the iterative solution of nonsymmetric systems of linear
equations. Such systems are beginning to arise more often in applications and
there is a dearth of methods for their solution. We had a chance to kill two
birds with one stone by studying the behavior of BCG on the S-1, since we
would learn about the behavior of BCG and, due to the general similarity of
BCG to other, more common methods such as Incomplete Cholesky Conjugate
Gradient, we would learn about the behavior of the S-1 on LLNL's typical

linear algebra problems.

We imagined an operator on a two-dimensional grid of dimensions
nk x nl . We assumed the operator was "nearly" a 5-point diffusion operator
so that the matrix we solved was I + BJ , where J is a block tridiagonal
matrix with blocksize nk . The diagonal blocks are tridiagonal matrices with
central diagonal values equal to 4. and each off-diagonal value equal to
-1. plus or minus a random perturbation. The off-diagonal blocks are
diagonal matrices with diagonal values equal to -l. plus or minus a random
perturbation. In both cases the random perturbations are applied as separate
perturbations applied to each element, not one fixed value applied to all
elements.

The value g is imagined to include various method dependent constants
times the time-step size. Increasing B makes the problem more difficult.
We are not interested here in the performance of the algorithm, but to give
the reacer an idea it solved a system with g = 1/10, nk = 60 , and

nl = 40 in just eight iterations to a relative accuracy of 1072 .
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For the remainder, let us just imagine that we have to solve Ax = b
where A is a nonsymmetric "five-striped" matrix with non-zero diagonal.

The biconjugate gradient algorithm with diagonal preconditioning can be stated

as follows. Let M = diag(A) .

(@) tet x =Mlp .
(b) Let r, =b - Axg
* *
(c) Let I, =Py =Py =T, -
(d) Calculate o = <, r;>

we refer to the above as the "initialization" phase.
The significant operations required in each iteration are:
(a) Multiply A by a vector.
(b) Multiply A* by a vector.

( A* means the transpose of A. Note however that we do not have to

form A*, merely multiply by it. )

1 times a vector (twice)

(c) Calculate M~
(d) Calculate dot products of two vectors (twice).

(e) Update r, r*, p, p* and x .

The matrix M is the preconditioning matrix. Different choices of M lead
to different convergence rates and different costs per iteration. The choice
of M must balance the ease of solving linear equations of the form Mx = y with
the need for M to resemble A is some way, in the sense that M'lA have a

smaller condition number than A.

If the preceding paragraph is Greek to the reader, never mind. The M we
have chosen makes the task of calculating M_l times a vector easy, yet for

the matrices in guestion yields a good convergence rate.



The algorithm divides easily into parallel calculations, and as a bonus
these calculations are vector operations for the most part. We calculate
each nk long segment of the answer using vector operations, with nl such
segments to calculate. One could do better on a machine like the Cray-1 by
treating the five diagonals as units and using the methods of [Mad76] but
transforming such a method to a multiprocessor would be more difficult. As it
is, with up to nl processors, we simply give each processor its share of
the nl segments to do.

Here then is the entire algorithm, with the dashed lines representing
synchronization points. There are unfortunately quite a few of these, since
at these points some processor is about to need the results of another

processor.

Initialization

1. o= tp ( b is input as initial rhs, output as solution x )

a=0
rdotrs = O

bnorm=0,rdotrs=0 ( done by processor 1 only )
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4. g=<b,b>

rdotrs=<r,r*>

These two dot products are done with a semaphored critical section as each
processor adds its partial dot-product to the total. The grand totals had to
pe previously initialized to zero, which they were in step 1. The same

procedure is used in the iteration phase as noted below.

5. onorm=epsiloney o (used to decide when to stop iteration)

epsilon is an input, user controlled parameter, say 1072,

Iteration

9. asps=A* t

10. a = <@ap,p+>



11. if o = 0 take error exit

a = rdotrs/a

12. b

b+a-°p
I'=T -0 °*ap
I'* = 1% - g * asps

l4. deltax = <p,p>
rdotrs = <r,r*>
Critical section while global rdotrs, deltax summed from local parts
15. deltax = | a | v deltax
If deltax < pnorm then exit iteration
16. p=rdotrs/rnold
7. p=r+p *p
p* = % + | = p*

18. Iterate to step 6.

We simulated various S-1 configurations on various size problems with
quite surprising results.

First we considered a medium sized problem with nk = 60, nl = 40 , and
varied numbers of processors. The results are given in Table 7. We used
double precision since typical LLNL matrices have large condition numbers. We
restricted the iteration to two iterations rather than running to convergence,

in order to conserve computer resources.
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Table 7

Behavior of BCG algorithm with nk=60, nl=40, in double precision.

Speed up
np MFLOPS over 1 processor efficiency Cache Hit Traffic
Ratio Ratio

1 2.6 1 1.0 .9785 .23

2 4.9 1.9 0.94 .9836 .17

4 14.5 5.6 1.4 L9911 .09

8 39.4 15.1 1.9 .9944 .05
16 47.6 18.3 1.14 .9942 .06

One Cray-1=32.0 MFLOPS.




There is a lot to say about Table 7. Right off the bat we seem to be
violating an "obvious" principal of multiprocessing, namely that the
efficiency, the speed using n processors divided by the guantity n times
the speed of one processor, should be less than or equal to 1 . But using
eight processors gives us an efficiency near 2 ! Isn't this impossible?

Clearly what must be going on is that something is slowing the one
processor case down. A glance at the cache hit ratio reveals the problem.
With just one processor, that processor has too much data for which it is
responsible, and the data won't fit in the cache. Only 97.8% of the time is
the desired line already in the cache, compared to 99.4% for the average of
the eight processors.

Well, 97.8% sounds good but it isn't. This translates into a traffic

ratio of .23, compared to only .05 for the eight processor case.

To test this hypothesis, we ran different sized problems on one

processor. See Table 8.

Table 8
behavior of BCG on an S-1 uniprocessor with varying problem sizes.

Performance declines markedly with increasing problem size due to a

declining cache hit ratio.

Problem size MFLOPS Hit ratio Tfc ratio
10 x 40 9.6 .9957 .04
20 x 40 4.7 .9887 .12
40 x 40 3.2 .9828 .18
60 x 40 2.6 .9785 .23
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A problem uses 14 vectors of length nk x nl , so in double precision the
data occupy 28enkenl works. Thus a 20 x 40 problem should use just
about 22K words, exceeding the cache size of 16K, while a 10 x 40 problem
will fit easily.

For additional confirmation, we ran the problems in single precision and
the results in Table 9 confirm the "1ék barrier" effect. Note that
28+30-40=17600, and in the single precision column we are just starting to
see the effect on the 30 by 40 problem.

Table 9
Performance of BCG on an S-1 uniprocessor in both single and double
precision. When the data in use exceeds 16K words, performance

beyins to decline.

MFLOPS MFLOPS
Problem size Double Precision Single Precision
10 x 40 9.6 18.2
20 x 40 4.7 19.1
30 x 40 | - 13.6
40 x 40 3.2 9.2
60 x 40 2.6 7.0

It seems to us that one must draw a fairly ominous conclusion from
this. A large 2-D problem in a hydrocode typically has a mesh size over 10K,
and easily has 10-20 vectors of data in use. This means that even 8
processors will not be able to keep the problem in cache. If the results then

degrade as they did in this problem, the results will be very poor.
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Figure 6 shows the output of the simulator which plots MFLOP rate versus
clock cycle. We have added to this figure indications of the location of each
event in the algorithm list.

Figure 7 shows the output of the simulator for the same problem with 8

Processors.
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Figure 6

Average MFLOP rate per processor versus clock cycle for the initialization
and first two iterations of BCG on a uniprocessor S-1, problem size nk = 60,
nl = 40, double precision. Shown above are the events occuring between the
synchronization points, with events number keyed to the algorithm listing
given previously. The synchronization after step 13 occurs so soon after
step 12 that it cannot be distinguished on this plot.
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Average MFLOP rate per processor versus clock cycle for the initialization
and first two iterations of BCG on an eight processor S-1, problem size
nk = 60, nl = 40, double precision. The numbers above indicate the

arrival of the different processors at each synchronization point.
Compare with Figure 6.
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Turning again to Table 7, let us consider the multiprocessor performance.
This algorithm has little inherent cross traffic. There are five vectors ( P,
p*, T, T*, b) which get updated. Each of these is updated in sections, with
each prOCessor doing a section. Other processors may need to use the portions
of a vector held by another processor when multiplying by A or A*, but this
only involves the vectors p, p*, and the temporary vector t. This occurs with
the multiplying by A or A* because of the outside blocks that exist in A's
block tridiagonal structure. Since each of the processors is doing several nk
long blocks, this sharing of p and p* will occur only at thé bouncaries
between two processors. Therefore we can expect some increasing interference
as the number of processors rises.

There is another "boundary effect" which we call "accidental line
sharing". The 16 word line boundaries fall in the data more or less at random
in our 60 by 40 problem. Therefore, at places in the vectors where a
processor boundary occurs, data for two different processors may fall in the
éame line, so that conflicts occur in updating this line despite the fact that
there is no theoretical conflict. This conflict could be avoided altogether
by suitable overdimensioning ofvthe matrices and vectors so that unused words
are inserted after each nk block of data.

We did not do this, and did not do other things that the reader may
notice, which may have increased performance in some cases. To us, the point
of the exercise is to find out what happens to our normal computational
physics problems when solved in a straightforward way. We have no doubt that
the S-1, like every other machine, can be coaxed into much higher performance
through the design of special algorithms, and the use special programming
practices, especially assembly language coding. This has certainly been the

case with our previous supercomputers. (ur previous experience has also
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taught us that this is a difficult job involving the special skills of some
relatively fare individuals, and thus can be applied to only a few selected
sections of major codes. We thus were interested in the "normal" performance
of the machine on parallel and nonparallel algorithms, coded in a simple way
in a higher level language, and sans any heroic measures.

For.the 60 by 40 problem in double precision, we note little improvement
when switching from 8 to 16 processors. Part of this is immediately
attributable to an unequal work load, since 8 divides 40 evenly but 16 does
not. The rest of the decline in efficiency is due to the two types of

boundary effects noteda above.
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4. A Monte Carlo Problem

R typical Mante Carlo code for say, calculating neutron transport, is a
difficult calculation to understand. With its many scalar operations and
memory references, it would ovefwhelm our simulator. Therefore we devised a
simple code which nonetheless has several of the most important qualities of a
Monte Carlo code:

(a) Unpredictable calculation time for a "particle", with the total

calculation being the calculation of thousands of "particleé".

(b) when a "particle" undergoes a "transition"; a table lookup is used to
obtain the result of a random selection from a probability
distribution.

(c) At each "transition", a weight is calculated and "energy" is
deposited in some component of an array.

The problem chosen is the solution of a linear system (I-H)x =y by the
adjoint Monte Carlo methbd, described in Hammersly [Hamé5]. The portion of
the problem'timed in the simulator consists of calculating an array x of
length m = 50 by Monte Carlo sampling 2000 times. First, x is initialized
to zero. When we begin a sample, or "particle", we choose the value of a
- variable i , which we call the state variable, from the values 1,2,...,m .
This is done by choosing a uniform random variable and performing table lookup
on a cumulative probability distribution. For example, to have an equal
probability of birth in each state, we have an array 'pbirth(j), jJ=1,...m
where pbirth(j) = j/m . Given rel0,1) , a random variable, we find the
least jo such that r < pbirth(jo) . Then we set 1i = Jo @and say

that the "particle" is "born" in state i . A "“score" is added to x(i).
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‘Next we determine the next "state" of the "particle™ & by usinga m x
m matrix C of "transition probabilities", where
C(j,i) = Prob(& < j given i) .

Thét is, each column of C represents the cumulative probabilities for
transitions from state i to other states. However, C(m,i) <1 and the
particle may "die" with probability 1-C(m,i) . In this case we are done with
this "particle". Assuming a new state & is chosen, we score by adding a
quantity to x(&) and continue.

The matrix C is cerived from the matrix H as described in [Hamé5]. Wwe
assume this has been done beforehand. There are restrictions on H which must

be met in order to use this method to solve the linear system.

To summarize, thé proceés consists of
(a) Birth
-- Choose i by lookup of random variable in table pbirth.
-- Calculate weight w
-- x(i) = x(1) + w
(b) Transitions until death occurs
-- Choose & by lookup of random variable in C(*,i)
Possible stop here if random number > C(m,i)

Calculate weight w

x(L) = x(L) + w
-- Set 1 = & and repeat (b)
Tnis process is done independently some number of times. In all the runs
reported here, this number is 2000 . The number of transitions/particle is a
function of the matrix H. In our first examples the probability of a "death"

averaged 1/2 , so that the expected number of transitions/particle should be
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about 1 . ( Even this strained our computer resources. We were able to make
one run with more transitions which we will describe later. It took 30
minutes to run on the Cray simulator.)

We used a "vectorized" assembly language table lookup scheme called
"33~section" and described in [Dub82c]. Using a standard FORTRAN bisection
method resulted in so many memory references that the cost of a simulation run
was unacceptably high. We did not trace the cost of the random number
generator for similar reasons. Separate tests on the Cray indicate that this
cost is about 1/3 of the other processes.

Exclusive of the random number calculations, the Cray performed the 342503
operations at a rate of 19 MFLOPS.

Table 10 shows the results of a straight transformation of the resulting
code to the S-1 . The code itself is given in Table 11. Note the use of

semaphores to protect elements of the array x from simultaneous updating.

Table 10

Performance of S-1 on Monte Carlo algorithm with various numbers of

pProcessors.
Number of MFLOPS
pProcessors (Simulated) Speedup Efficiency
1 13.2 1.0 1.00
2 14.5 1.1 0.55
-4 15.6 1.2 0.30
8 16.7 1.3 0.16
<ray-1> 19.3
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Table 11

Code for Monte Carlo subroutine, showing use of semaphores to protect
the elements of array x from simultaneous updating. The first section
of code divides the work to be done into np equal parts. The "forkoff"
statement creates the np processors. The statements psem(i) and
vsem(i) set and clear, respectively, the i'th semaphore.

sSuoroutine mc(h,c,pbirth,tpb,x,a,m,npar)

c Adjoint form of monte carlo solution of linear equation (I-H)x=a

c Reference...Hammersly, Monte Carlo Methods

c Author: P. F. Dubois

c The following three lines are cliches which expand into needed definitions
use mpdefs
use mpall
use mploc
aimension h(m,m), c(m,m), x(m), a(m), tpb(m), poirth(m)
data maxc/500/

MULTIPROCESS---Ccreate np processors--pricl is the processor number
forkoff [np-1]

(@]

ninin = l+((prlcl-1)*npar)/np
nmax = prlcl*npar/np

mmin = 1+((pricl-1)*m)/np
nmax = prlcl*m/np

initialize answer
go 10 i = mmin, mmax
x(i) = 0.
10 call vsem(i)
call syncal
c loop on monte carlo tries
do 20 ip = nmin, nmax
¢ find first state wusing distribution tpb and random number generator ranf
c luf(x,table,m) returns index of x in tapble, m+l if too big
i = luf(ranf(0), tpb, m)
c calculate starting weight and score birth
wg = a(i)/(pbirth(i)*npar)
call psem(i)
x(1) = x(i)+wg
call vsem(i)
¢ collisional loop...change from state i to state 1
do 30 lcoll =1, maxc
c fing next state using i'th distripbution
L = luf(ranf(0), c(l,i), m)
C was particlie killed?
if (1,gt,m) go to 20
C calcuiate current weight and score--real one in M.C. code would have more ops
wyg = wg*n(l,i)/aps(h(1,1i)) ( so this is as clumsy as possible)
cail psem(l)
x(1l) = x(1)+wy
call vsem(1l)
c set 1 to new state ana loop
i=1
30 continue
c error if we reach here--error coding omitted in this listing
20 continue
call syncal
return
end

(@]
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we studied the causes of this poor performance. The three problems that

came to mind were:

(a)
(b)
(c)

unequal work performed by different processors
Semaphore overhead
Cross-traffic due to sharing array x between

processors.

The databases C and pbirth are small and migrate gradually to cache. The

plot in Figure 8 for 8 processors shows the MFLOP rate builds up while these

arrays are being fetched, and then oscillates randomly around 16 MFLOPS with

what one might interpret as a late burst of 18-19 MFLOPS just at the end.

The marks show the finish time of each processor completing its 250 = 2000/8

particles. It is clear that the unequal work issue is not important here.
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An investigation of the semaphore overhead guestion revealed that this
problem was negligible, with almost no losses due to one processor having to
wait for another to pass a critical section.

| The startling thing in Figure 8 is that the MFLOP rate stays up after most
of the processors have quit! Indeed, Figure 9 shows the cross-traffic between
processors. The decline in cross traffic matches the decline in the number of
processors still working, and the MFLOP perhaps even increases.

We thus predict that it is the sharing of the variable x which is
responsible for the poor performance. To test this idea, we rewrote the code
so that each processor accumulates into its own copy of the array x , and then
these partial sums are accumulated at the very end. The results are shown in
Table 12.

Table 12
Comparison of previous results with results using a local array for

accumulating a portion of the answer, followed by summation of the partial

results.
MFLOPS MFLOPS
Number of (Global (Local Speedup
Processors array) array) vrs. global
2 14.5 26.1 1.8
4 15.6 47.9 3.1
8 16.7 75.7 4.5
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This benchmark is very simple and of course does not reflect at all
many important parts of a Monte Carlo code. The number of particles is
arbitrary and not necessarily in the correct proportion relative to the
cross-sections for interaction. It may be that the unequal work problem will
be more or less important than shown here. Also, we may have overstated the
S-1 performance since many of the operations are of the sort, like address
calculations, which we do not simulate.

We ran one problem with a much higher number of
transitions/particle for comparison. The simulator generated about 22 million
words of gata and used 30 minutes of Cray time for the calculation, giving the
‘reader a hint at what simulating a real Monte Carlo code might amount to. The
average MFLOP rate for eight processors rose to 99.5 MFLOPS. We found that
with the larger amount of work to do, the proportion of the time spent getting
up to speed is smaller, as is the proportion of the time lost to unequal
work. The former was fairly significant in the simpler problem, representing
inefficiencies which last until each processor has read into cache all of the
cross-sectional data.

It is interesting to note, however, how much the performance is
degraded during this time. This may imply, for example, that such a code
doing timesharing with another code may be very much damaged, or that if you
are going to do samples at all that you may as well do a lot, since the
marginal cost of a sample falls off so dramatically. However, we are not
certain on these points since our benchmark is so far from a real code. We

can only treat these results as a tantalizing glimpse of the possibilities.
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5. Finite Element Neutronics

Recently a new method of calculating time-independent neutron transport in
one-dimension has been developed by J. Ferguson. The method is significantly
faster than the Sn method. Anne Greenbaum's analysis of the method has
classified it as a Petrov-Galerkin finite element method. Therefore we shall
refer to the algorithm as the Petrov-Galerkin-Ferguson algorithm, or PGF for
short. Studies of a time-dependent version of PGF are under way.

We tested PGF as is on the simulator. We then developed a parallel
version of the algorithm, and tested it on simulated multiple processor
machines. First we will explain the algorithm, and then given our results.

Let N be the number of radial points, Ty eovy Ty - Let
K=2M+ 1 Dbe the number of angular points. The angles are represented as
oirection cosines relative to the radial axis, so that -1 represents flow
toward r =0 and 1 flow away from r =0 . We can imagine either

'spherical symmetry or plane symmetry; this only affects the boundary
conditions.

wé arrange our angular points from -1 to 1, so we have -1 = My )

Mo o9 eee Uy o9 My =0, Mg 0 0 obom,] The left half
of our computational mesh is shown in Figure 10.
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The computation of the solution f(i,j) , i=l,...N; j=l1,...K, proceeds

in four steps:

(a)

(b)

(c)

(d)

The first boundary condition

We calculate the left side of the upper boundary and the entire left
edge, that is, f(N,j) , j=1, ..., M#l and f(i,1) , i=1, N-1 .

Thne main calculation, left half.

We calculate the left (u <0) portion of the solution by
proceeding down each column in turn, that is, f(i,2) , i=N-1
descending to i=l1 , followed by f(i,3) , i=N-1, 1, etc., up to
f(i,mel) , i=N-1, 1 .

The second boundary condition.

The second boundary condition yields f(1,j) , Jj=M+l, ..., K, i.e.
the rest of the bottom edge.

The main calculation, right half.

We calculate the right side, this time moving up the columns.

This is shown more graphically in Figure 10. Please study this figure for

a moment as we shall refer to it repeatedly in the sequel.
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Angles

® Known after first boundary condition
is applied.

O Can be calculated immediately after
first boundary is calculated.

0O Can be calculated after O.
A ""Wavefront of calculation’” at a later stage.

Radial points

Figure 10

. The left half of the computational grid, showing the locations known after
applying the first boundary conditions to get the top and left edge (dark
circles). The location circled is the first interior point to be
calculated. The other marked points are referred to in the text.
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The reason we calculate the values as we do is that for p <0, that
is, Jj <M+l , we can calculate a point f(i,j) as soon as we know the 3
-values at the corners of the rectangle of which f(i,j) is the lower rignht
corner:

f(i+l,j-1) =---- f(i+l,]j)
| |
f(i,j-1) =---- f(i,})
During the calculation of f(i,j) for j> m+l , we likewise must know
values in the corners below and to the left of f(i,j) .

Uther than knowing that f(i,j) depends on these three values, the
details of the calculation are not important to this discussion, except to say
that the calculation involves roughly a hundred floating point operations and
that external calls to source routines are required. We used very simple
source routines for our tests. So we can say that f(i,j) can be calculated
when we know its neighbors, and without side effects, and that the calculation
is substantial enough to keep the processor busy for a while. There is also
some work in common that we could have extracted out and precalculated, but we
did not do this in the interests of simplicity and in line with the philosophy
we expressed earlier.

In Figure 10 , after calculating the upper boundary condition, we can
solve an ODE along the line u = -1 to get values on the left edge. The
value f(N-l, 2) (shown circled) is the first interior point we can
calculate, since we know its three neighbors.

Note that once this is done we could proceed to calculate f(N-2, 2) or
f(N-1, 3) (Marked with a L in Figure 10). The scalar code proceeds in the

former direction.
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The parallel version of PGF uses a "wave-front" principle. We calculate a
aiagonal line of elements simultaneously. At stage 1 we calculate f(N-3, 2)

At state 2 we simultaneously calculate f(N-2,2) and f(N-1,3) . Next we
do the three values f(N-3,2) , f(N-2, 3) and f(N-1, 2) . We continue to
expand the number of processors in use until we either reach the column M+l
or all of the processors are in use. If there are m or more processofs we
reach all columns on one pass. Otherwise we need another pass or passes.
with K =17 , M =8, we can use up to 8 processors at once. In actual
practice, such a seemingly small value as K = 17 is not uncommon at all. The
spatial resolution is often considerably higher, with several hundred points
not unheard of.

Naturally, when we reach the bottom of the column the number of processors
in use drops gradually down to 1 again.

We do not have perfect parallelism here, but since N >> K in real
problems, the penalty to build up our wave-front is not too severe. In fact,
we can analyze just what it is.

Assume one processor can calculate one f(i,j) in time u . The time

tor a scalér calculation, ignoring the boundary calculations, is thus:
to = (@M * (N-1))u .

Let the number of processors be P and assume P divides M evenly.
The number of stages of calculation on the downward sweep is N-1+P-1 . This
is done M/P times. Each stage takes p units of time, for a parallel
time for both downward and upward sweeps together of

ty = 2(M/P) (N-1+P-1)u
Thus ts/tp = P(N-1)/(N-1+P-1)

The efficiency, E = ts/Ptp = (N-1)/(N-1+P-1) .
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The efficiency of the calculation as a whole is reduced by the calculation
of the left boundary, which cannot be done in parallel. A complete
formulation is:

t
]

2M * (N-L)u + (M+l)1b + (N-l)uz

*p

where M is the time to calculate an upper boundary point and Mg

2[M/PJ(N-1+P-1)y + (M+l)pb + (N-l)ul

is the time to calculate a left boundary point.

The relative values of u , Mg and My depend on the actual
coding for source terms, boundary conditions, etc. An actual measurement on
the Cray-1 was made, yielding approximate relative values p=1,

Wy = A, Mg = 05 .

For M =8 , we get the following values of t /t, for various N

p
and P .
Table 13
Theoretical vValues of ts/tp , M=18
N
P 31 51 101

2 1.93 1.95 1.97
4 3.72 3.74 3.85

8 6.55 6.87 7.32
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The corresponding efficiencies (tS/Ptp) are shown in Table 14.
Table 14

Theoretical efficiency, tS/Ptp, M=28

N
P 31 51 101
yA 97 .98 99
4 93 .94 96
8 82 .86 92

This, then, represents the inherent inefficiency of the algorithm. We

cannot expect any multiprocessor to do better than this.

Scalar Results

We simulated the performance of a single S-1 processor. Our standérd
problem was N=51 , K=17 . We calculated a rate of 8.6 MFLOPS in single
precision. The Cray-l1 achieved 5.3 MFLOPS.

This impressive performance of the S-1 can be traced mostly to the cache.
while the Cray is shipping results back and forth to memory, as it is
instructeo to do by any FORTRAN compiler, the S-1 keeps all the results in
cache, ready to be used at the next stage. It also keeps such handy
quantifiers as the radii ana angle values in cache. It is able to do this
because this one-dimensional test has a small amount of data. There is also
an element of simulator optimisﬁ here too, since the address calculations for

expressions like f(i-1, j+l) have been done for free.
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Parallel Results

We recoded the algorithm for multiprocessors using the wave-front

algorithm previously described. The same 17 x 51 test problem was used.

The results are shown in Table 15, where we have included the theoretical

efficiencies from Table 13 for convenience of comparison.

Table 15

Simulated S-1 performance on a 51 by 17 PGF test problem, showing actual

multiprocessor speedups compared to those theoretically possible. S-1

MFLOPS based on the design speed.

Actual
P MFLOPS efficiency
1 7.6 1.0
2 9.3 .61
4 13.6 .45
8 17.6 .29

Theoretical

Efficiency

1'00
.98
.94

.86

Actual/
Theoretical
1.00
.62
.48

1

We can account for nearly every lost cycle in comparing the actual to

the theoretical performance. Table 16 shows, for P = 8 , the percentage of

time each processor spent waiting for three different resources. These are:

74



(a) Synchronization, the processor was waiting for other

processors to reach a sync point;

(b) Switch, the processors request for data was waiting for a
switch path;
(c) Memory .
Table 16

Details of 8 processor PGF test.

The columns show, for each processor,

the cache miss rate, the percentage of its time that it spent waiting

for, respectively, global memory, the interconnection switch, and for

other processors to reach a synchronization point, and finally the

average MFLOP rate for that processor.

cache
Proc. no. miss

1 0.170
2 0.260
3 0.336
4 0.401
5 0.438
6 0.452
7 U.458
8 0.493
avg. 0.376

Total megaflops

wait
for g mem.
0.083
0.170
0.245
0.305
0.346
0.387
0.433
0.409
0.297

17.600

wait

for switch
0.033
0.062
0.148
0.096
0.037
0.025
0.036
0.024

0.058

wait

for sync
0.512
0.408
0.266
0.242
0.264
0.255
0.220
0.213

0.297

megaflops
2.431
2.167
2.167
2.167
2.167
2.167
2.167
2.167

2.200

If we sum these three waiting fractions for each processor we get the

totals shown in Table 17.
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Table 17

Total fraction of processor time spent waiting for global memory,

interconnection switch, or synchronization.

Processor Total wait time fraction

1 .628
2 .640
3 , .659
4 643
5 .647
6 .667
7 .689
8 646
Average .652

Note that each processor either had trouble waiting for data, or, when
it didn't, had to wait for the others. (the Statistics for processor 1 are
" slightly different because this processor did the left boundary by itself).
The average waiting time of .652 means an efficiency of about .35, nearly
exactly what we measured as the ratio of actual to theoretical performance in

this case.

Table 18 shows more detail for the P = 8 case. A variety of data like

this, and informative plots, are produced by the simulator.
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Table 18
Details of processor activity, memory bank loads, and processor memory loads for PGF problem with 8 processors.

Proc. no. cycles busy percent gmem ref. 1lmem ref. cache ref. m to others m fr others cache hit ratio
1 91246.0 39.48 227 25 21991 112 213 0.989
2 83691.0 36.21 229 23 19796 215 217 0.987
3 83875.0 36.29 230 23 19795 218 218 0.987
4 84099.0 36.39 233 23 19792 221 222 0.987
5 83955.0 36.33 231 23 19794 219 220 0.987
6 84317.0 36.48 234 23 19791 222 223 0.987
7 83313.0 36.05 232 23 19793 220 212 0.987
8 79789.0 34,52 176 23 19806 211 113 0.990

memory statistics load fractions
bank: 1 2 3 4 5 6 7 8
0.020 0.216 0.391 0.000 0.000 0.000 0.000 0.000

memory statistics load fractions per processor

Proc. no. cache local bank: 1 2 3 4 5 6 7 8
1 0.190 0.005 0.003 0.028 0.049 0.000 0.000 0.000 0.000 0.000
2 0.171 0.004 0.002 0.028 0.050 0.000 0.000 0.000 0.000 0.000
3 0.171 0.004 0.002 0.028 0.050 0.000 0.000 0.000 0.000 0.000
4 0.171 0.004 0.002 0.028 0.052 0.000 0.000 0.000 0.000 0.000
5 0.171 0.004 0.002 0.028 0.051 0.000 0.000 0.000 0.000 0.000
6 0.171 0.004 0.002 0.028 0.052 0.000 0.000 0.000 0.000 0.000
7 0.171 0.004 0.002 0.028 0.051 0.000 0.000 0.000 0.000 0.000
8 0.171 0.004 0.002 0.021 0.038 0.000 0.000 0.000 0.000 0.000

avg. 0.174 0.004 0.002 0.027 0.049 0.000 0.000 0.000 0.000 0.000



The reader may be wondering whether the all this traffic between
processors is a real part of the algorithm or merely a detail of
implementation that could have been eliminated. It is necessary. Please
refer to Figure 10, and imagine that each processor is about to calculate one
of the the values marked by triangles, say processor 1 doing the leftmost,
processor 2 the next one, etc. Each processor has just finished calculating
the value just above. Assuming the array is stored in the usual column order, a
the processor probably has the line containing that word, and the one it is
about to calculate, in cache. Unfortunately, the next processor needs the
previously calculated value too. If we store the data the other way, rowwise,
then while the processor is calculating a value that will likely be in a new
line, the neighboring processor still needs the value just calculated and that
line is inevitably in the cache of the processor that just calculated it. If
K is smaller than the line size there may be even more complicated
relationships to consider, so the results we report above are for the data
stored by columns, that is, with successive radial points adjacent.

It is worth mentioning that this calculation might be significantly
speeded up in multiprocessor mode by use of the S-1 message passing hardware.

Using this hardware, the new results needed by neighboring processors could be
shipped directly to the processors that need them. This would dramatically
reduce the problems we discussed above. Of course, it would also require a

significant reprogramming effort. When an actual S-1 multiprocessor is

U}

available we look forward to trying this out.

Inspired by the fact that Table 18 shows all the data in the first three ' *
banks, we tried changing the page size to 32 words to see if performance could
be improved in this case by spreading out the data through 8 banks. It did

improve, but only to 19.2 MFLOPS from 17.6 MFLOPS.
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We also ran several cases in double precision. There was virtually no

degradation of performance. For example, for P = 8 we got 17.4 MFLOPS.
Our colleague Anne Greenbaum tried a parallel version of the

algorithm on the HEP (uniprocessor) computer. The HEP was very much slower
than either the Cray-1l or S-1. Interestingly, though, it did achieve nearly
the full theoretical speedup using the multiple processes/processor features
of the HEP. It was also easy to express the desired concepts in the HEP's
extended FORTRAN. We have not had a chance to try a multiple PEM version of
the HEP, that 'is, with multiple processes per processor and more than one
processor. The mina reels to think of the number of different algorithms

there are to try on such a system.

we conclude that while a single processor will do well on this
provlem since the cata fits in cache, the need to share just completed results
significantly deyrades the performance of the S-1 below that predicted by
theory, or that achievable with a multiple processes per processor
architecture. However, this could be improved with reprogramming to use the

message passing hardware.
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V. CONCLUSION

The simulations we have reported on were undertaken with the goals of
investigating the performance issues raised by MIMD machines and gaining
experience with the programming techniques required to utilize them. As yet
we have explored only a limited set of algorithms and a single simulated
machine. As discussea earlier, we have taken existing uniprocessor algorithms
and extendea them to a shared memory multiprocessor with minimal changes.
Clearly future algorithms may depart radically from this approach. Our
simulations are also deficient in that real problems run on fast multi-
processors will in general have many more zones than those we have been able
to treat.

In view of all these limitations, what have we actually learned? Our
experience to data with the simulator allows us to draw three tentative
conclusions about the use of MIMD machines for solving large scientific
problems:

l. The S-1 can be used as a multiprocessor in two relatively
distinct modes. These are a shared memory, or tightly coupled, approach in
which problem cata is primarily stored in shared memory; and a distributed
processing, or loosely coupled, approach in which problem data is primarily
stored in private memory and communication takes place when required through
‘the interprocessor message network. The shared memory approach, which we have
used here, is relatiVely simple to program using a few extensions to FORTRAN.
The distributed computing approach appears to offer higher performance for
many algorithms. However, substantial programming effort and significant

language extensions would be required to realize this potential.
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2. Extrapolation of our simulator results to much larger problems
indicates that many of the factors which limited our speedups in the 4 <P
< 16 range will be greatly reduced in importance. This is particularly true
for:
a. Uverhead operations which result from partitioning the algorithm.
These include process management operations and communication between
processes.
b. Synchronization penalty that results from speed variation between
processes.
On the other hand, conflicts between processors in obtaining access to shared

resources (usually memory banks and communication paths) will continue to be

important. In considering the scaling issue, the effect of cache memory may

outweigh all of these factors, however, which brings us to our final point.

3. The usefulness of a traditional data cache for scientific problems
with large data sets appears guestionable. In the cases we have studied,
performance drops rapidly with increasing problem size. Clearly this
performance drop can be delayed with algorithms which optimize cache hit rates.
It acoes not appear feasible to do this by hand, however, except for simple
cases. Compilers clearly must perform this tasks if it is to be done at all.
The problem is difficult since the optimization approach must be dependent on
data set size.

In the future we plan to further increase our understanding of MIMD
machines and algorithms by pursuing the comparison of our simulator results
with actual measurements on the S-1 MkIIa multiprocessor, when it becomes
available. Additionally, we feel that improved analytic modeis for MIMD
performance can be constructed which will be qﬁite useful. The work of Briggs
[brig0], Dubois [Dub82a,b], Yen et al [Yen82], and Gilbert [Gil79], among

others, provide an excellent foundation on which to build them.
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